Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode.

نویسندگان

  • Stefano Mancuso
  • Anna Maria Marras
  • Volker Magnus
  • Frantisek Baluska
چکیده

Auxin (also known as indole-3-acetic acid, IAA) represents an ancient signaling molecule of plants that also exerts bioactive actions on yeast and animal cells. Importantly, IAA emerges as a new anticancer agent due to the ability of oxidatively activated IAA to selectively kill tumor cells. IAA acts as a pheromone-like molecule in brown algae, whereas the hormone concept of IAA dominates current plant biology. However, recent advances also favor the morphogen- and transmitter-like nature of IAA in plants, making this small molecule one of the most unique molecules in the eukaryotic superkingdom. Here, we introduce new technology for the continuous measuring of IAA fluxes in living cells, tissues, and whole organs that is based on a carbon nanotube-modified and self-referencing microelectrode specific for IAA. This technique not only will advance our knowledge of how IAA regulates plant development but will also be applicable in medicine for its potential use in cancer therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism.

Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essen...

متن کامل

A model for modified electrode with carbon nanotube composites using percolation theory in fractal space

We introduce a model for prediction the behavior of electrodes which modified withcarbon nanotubes in a polymer medium. These kinds of polymer composites aredeveloped in recent years, and experimental data for its percolation threshold isavailable. We construct a model based on percolation theory and fractal dimensionsand using experimental percolation threshold for calculating the moments of c...

متن کامل

An efficient platform based on cupper complex-multiwalled carbon nanotube nanocomposite modified electrode for the determination of uric acid

A new voltammetric sensor for determination of uric acid (UA) by Cuppercomplex- multiwalled carbon nanotube (Cu-complex-CNT) nanocomposite modifiedcarbon paste electrode (CPE) is reported. The electrocatalytic behavior of theCu-complex-CNT nanocomposite modified CPE was studied in pH 2.0 phosphatebuffer solution by chronoamperometry (CA) and cyclic voltammetry (CV) in th...

متن کامل

Simultaneous Voltammetric Determination of Ascorbic Acid and Uric Acid Using a Modified Multiwalled Carbon Nanotube Paste Electrode

This paper describes the development, electrochemical characterization and utilization of novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of ascorbic acid (AA). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of AA about 235 mV ...

متن کامل

Simultaneous Voltammetric Measurement of Ascorbic Acid, Epinephrine, Uric Acid and Tyrosine at a Glassy Carbon Electrode Modified with Nanozeolite-Multiwall Carbon Nanotube

In this study, incorporation of iron ion-doped natrolite nanozeolite, multi-wall carbon nanotubes into chitosan-coated glassy carbon electrode for the simultaneous determination of ascorbic acid, epinephrine, uric acid and tyrosine is studied. The results show that the combination of multi-wall carbon nanotubes and iron ion-doped natrolite zeolite causes a dramatic enhancement in the sensitivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical biochemistry

دوره 341 2  شماره 

صفحات  -

تاریخ انتشار 2005